Воздействие лазерного излучения на организм. Основные принципы и биологические механизмы воздействия лазерного излучения на кожу Воздействие лазера на организм

Термин «лазер» («laser») составлен из начальных букв пяти слов «Light amplification by stimulated emission of radiation», что в переводе с английского означает « Усиление света путем его вынужденного излучения». В сущности, лазер представляет собой источник света, в котором путем внешнего освещения достигается возбуждение атомов определенного вещества. И когда эти атомы под воздействием внешнего электромагнитного излучения возвращаются в исходное состояние, происходит вынужденное излучение света.

Принцип действия лазера

Принцип действия лазера сложен. Согласно планетарной модели строения атома, предложенной английским физиком Э.Резерфордом (1871-1937), в атомах различных веществ электроны движутся вокруг ядра по определенным энергетическим орбитам. Каждой орбите соответствует определенное значение энергии электрона. В обычном, невозбужденном, состоянии электроны атома занимают более низкие энергетические уровни. Они способны только поглощать падающее на них излучение. В результате взаимодействия с излучением атом приобретает дополнительное количество энергии, и тогда один или несколько его электронов переходят в отдаленные от ядра орбиты, то есть на более высокие энергетические уровни. В таких случаях говорят, что атом перешел в возбужденное состояние. Поглощение энергии происходит строго определенными порциями - квантами. Избыточное количество энергии, полученное атомом, не может в нем оставаться бесконечно долго - атом стремится избавиться от излишка энергии.

Возбужденный атом при определенных условиях будет отдавать полученную энергию так же строго определенными порциями, в процессе его электроны возвращаются на прежние энергетические уровни. При этом образуются кванты света (фотоны), энергия которых равна разности энергии двух уровней. Происходит самопроизвольное, или спонтанное излучение энергии. Возбужденные атомы способны излучать не только сами по себе, но и под действием падающего на них излучения, при этом излученный квант и квант, «породивший» его, похожи друг на друга. В результате индуцированное (вызванное) имеет ту же длину волны, что и вызвавшая его волна. Вероятность индуцированного излучения будет нарастать при увеличении количества электронов, перешедших на верхние энергетические уровни. Существуют так называемые инверсные системы атомов, где происходит накопление электронов преимущественно на более высоких энергетических уровнях. В них процессы излучения квантов преобладают над процессами поглощения.

Инверсные системы используются при создании оптических квантовых генераторов - лазеров. Подобную активную среду помещают в оптический резонатор, состоящий из двух параллельных высококачественных зеркал, размещенных по обе стороны от активной среды. Кванты излучения, попавшие в эту среду, многократно отражаясь от зеркал бесчисленное количество раз пересекают активную среду. При этом каждый квант вызывает появление одного или нескольких таких же квантов за счет излучения атомов, находящихся на более высоких уровнях.

Рассмотрим принцип работы лазера на кристалле рубина. Рубин - природный минерал кристаллического строения, исключительно твердый (почти как алмаз). Внешние кристаллы рубина очень красивы. Их цвет зависит от содержания хрома имеет различные оттенки: от светло-розового до темно-красного. По химической структуре рубин - окись алюминия с примесью (0,5%) хрома. Атомы хрома - активное вещество рубинового кристалла. Именно они являются усилителями волн видимого света и источником лазерного излучения. Возможное энергетическое состояние ионов хрома можно представить в виде трех уровней (I, II и III). Чтобы активизировать рубин и привести атомы хрома в «рабочее» состояние, на кристалл навивают спиральную лампу - накачку, работающую в импульсном режиме и дающую мощное зеленое излучение света. Эти «зеленые» кванты тотчас поглощаются электронами хрома, находящимися на нижнем энергетическом уровне (I). Возбужденным электронам достаточно поглощенной энергии для перехода на верхний (III) энергетический уровень. Возвратиться в основное состояние электроны атомов хрома могут либо непосредственно с третьего уровня на первый, либо через промежуточный (II) уровень. Вероятность перехода их на второй уровень больше, чем на первый.

Большая часть поглощенной энергии переходит на промежуточный (II) уровень. При наличии достаточного интенсивного возбуждающего излучения представляется возможность получить на втором уровне больше электронов, чем осталось на основном. Если теперь осветить активизированный кристалл рубина слабым красным светом (этот фотон соответствует переходу со II в I основное состояние), то «красные» кванты как бы подтолкнут возбужденные ионы хрома, и они со второго энергетического уровня перейдут на первый. Рубин при этом излучит красный свет. Так как кристалл рубина представляет собой стержень, торцевые поверхности которого изготавливаются в виде двух отражающих зеркал, то отразившись от торцов рубина, «красная» волна вновь пройдет через кристалл и на своем пути всякий раз будет вовлекать в процесс излучения все большее число новых частиц, находящихся на втором энергетическом уровне. Таким образом, в кристалле рубина непрерывно накапливается световая энергия, которая выходит через его границы через одну из торцевых полупрозрачных зеркальных поверхностей в виде испепеляющего красного луча в миллион раз превосходящего по яркости луч Солнца.

Помимо рубина, в качестве активного вещества применят и другие кристаллы, например, твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла), газовые лазеры (активным веществом являются газ - смесь аргона и кислорода, гелия и неона, окись углерода), лазеры на красителях, химические лазеры, полупроводниковые лазеры.

В зависимости от устройства лазера его излучение может происходить в виде молниеносных отдельных импульсов («выстрелов»), либо непрерывно. Поэтому различают лазеры импульсного и непрерывного действия. К первым относится рубиновый лазер, а ко вторым - газовые. Полупроводниковые лазеры могут работать как в импульсном, так и в непрерывном режиме.

Лазерное излучение имеет свои характеристические черты. Это когерентность, монохроматичность и направленность.

Монохроматический - значит одноцветный. Благодаря этому свойству луч лазера представляет собой колебания одной длины волны, например, обычный солнечный свет - это излучение широкого спектра, состоящее из волн различной длины и различного цвета. Лазеры имеют свою, строго определенную длину волны. Излучение гелий-неонового лазера - красное, аргонового - зеленое, гелий кадмиевого - синее, неодимового - невидимое (инфракрасное).

Монохроматичность лазерного света придает ему уникальное свойство. Вызывает недоумение тот факт, что лазерный луч определенной энергии способен пробить стальную пластину, но на коже человека не оставляет почти никакого следа. Это объясняется избирательностью действия лазерного излучения. Цвет лазера вызывает изменения лишь в той среде, которая его поглощает, а степень поглощения зависит от оптических свойств материала. Обычно каждый материал максимально поглощает излучение лишь определенной длины волны.

Избирательное действие лазерных лучей наглядно демонстрирует опыт с двойным воздушным шаром. Если вложить зеленый резиновый шар внутрь шара из бесцветной резины, то получится двойной воздушный шар. При выстреле рубиновым лазером разрывается только внутренняя (зеленая) оболочка шара, которая хорошо поглощает красное лазерное излучение. Прозрачный наружный шар остается целым.

Красный свет рубинового лазера интенсивно поглощается зелеными растениями, разрушая их ткани. Наоборот, зеленое излучение аргонового лазера слабо абсорбируется листьями растений, но активно поглощается красными кровяными тельцами (эритроцитами) и быстро повреждает их.

Второй отличительной чертой лазерного излучения является его когерентность. Когерентность, в переводе с английского языка (coherency), означает связь, согласованность. А это значит, что в различных точках пространства в одно и то же время или в одной и той же точке в различные отрезки времени световые колебания координированы между собой. В обычных световых источниках кванты света выпускаются беспорядочно, хаотически, Несогласованно, то есть некогерентно. В лазере излучение носит вынужденный характер, поэтому генерация фотонов происходит согласованно и по направлению и по фазе. Когерентность лазерного излучения обусловливает его строгую направленность - распространение светового потока узким пучком в пределах очень маленького угла. Для света лазеров угол расходиомсти может быть меньше 0,01 минуты, а это значит, что лазерные лучи распространяются практически параллельно. Если сине-зеленый луч лазера направить на поверхность Луны, которая находится на расстоянии 400000 км. От Земли, то диаметр светового пятна на Луне будет не больше 3 км. То есть на дистанции 130 км. Лазерный луч расходится меньше, чем на 1 м. При использовании телескопов лазерный луч можно было бы увидеть на расстоянии 0,1 светового года (1 световой год =10 в 13 степени км.).

Если мы попробуем сконцентрировать с помощью собирающей линзы свет обыкновенной электролампочки. То не сможем получить точечное пятно. Это связано с тем, что преломляющая способность волн различной длины, из которых состоит свет, различно, и лучи волн с одинаковой длиной собираются в отдельный фокус. Поэтому пятно получается размытым. Уникальное свойство лазерного излучения (монохроматичность и малая расходимость) позволяют с помощью системы линз сфокусировать его на очень малую площадь. Эта площадь может быть уменьшена настолько, что по размерам будет равна длине волны фокусируемого света. Так, для рубинового лазера наименьший диаметр светового пятна составляет примерно 0,7 мкм. Таким образом можно создать чрезвычайно высокую плотность излучения. То есть максимально сконцентрировать энергию. Лазер с энергией в 100 джоулей дает такие же вспышки, как и электрическая лампочка мощность в 100 ватт при горении в течение одних суток. Однако вспышка лазера длится миллионные доли секунды и, следовательно, та же энергия оказывается спрессованной в миллион раз. Вот почему в узком спектральном диапазоне яркость вспышки мощных лазеров может превышать яркость Солнца в биллионы раз. С помощью лазеров можно достигнуть плотности энергии излучения около 10 в 15 степени ватт на метр квадратный, в то время, как плотность излучения Солнца составляет только порядка 10 в 7 степени ватт на метр квадратный. Благодаря такой огромной плотности энергии в месте фокусировки пучка мгновенно испаряется любое вещество.

В процессе изготовления, испытания и эксплуатации лазерных изделий на обслуживающий персонал могут воздействовать физические, химические и психофизиологические опасные и вредные факторы.

К физическим факторам относятся:

  • · Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное);
  • · Высокое напряжение в цепях управления и источниках электропитания лазера (лазерных установок);
  • · Повышенный уровень ультрафиолетовой радиации от импульсных ламп накачки или кварцевых газоразрядных трубок в рабочей зоне;
  • · Повышенная яркость света от импульсных ламп накачки и зоны взаимодействия лазерного излучения с материалом мишени;
  • · Повышенный шум и вибрация на рабочем месте, возникающие при работе лазера (лазерной установки);
  • · Повышенный уровень ионизирующего рентгеновского излучения от газоразрядных трубок и др. элементов, работающих при анодном напряжении более 5 кВ;
  • · Повышенный уровень электромагнитных излучений ВЧ - и СВЧ - диапазонов в рабочей зоне;
  • · Повышенный уровень инфракрасной радиации в рабочей зоне;
  • · Повышенная температура поверхностей оборудования;
  • · Взрывоопасность в системах накачки лазеров;
  • · Возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.

К химическим факторам относятся:

  • · Загрязнение воздуха рабочей зоны продуктами взаимодействия лазерного излучения с мишенью и радиолиза воздуха (озон, окислы азота и др);
  • · Токсические газы и пары от лазерных систем с прокачкой хладагентов и др.

Психофизиологические факторы - это:

  • · Монотония, гипокинезия, эмоциональная напряженность, психологический дискомфорт;
  • · Локальные нагрузки на мышцы и кисти предплечья; напряженность анализаторных функций (зрение, слух).

Лазер считается одним из самых идеальных предвидений Альберта Эйнштейна. Он активно твердил о том, что атомы могут излучать свет. Данная теория подтвердилась через полвека, когда Прохоров, Басов изобрели квантовый генератор. Лазер способен давать особое излучение. В современном мире они широко используются в медицине, в разных областях техники, в шоу и представлениях на эстраде. Несмотря на сумасшедшую популярность, важно разобраться, какое воздействие осуществляется на человеческий организм.

Специфика излучения

Лазерное излучение рождается в атомах, так же как и простой свет. Однако для этого необходимы специальные физические процессы, благодаря которым, происходит необходимое влияние внешнего поля – электромагнитного. Именно поэтому излучение принято считать стимулированным, вынужденным. Для измерения его мощности используют особый прибор – измеритель для этого используются многие способы.

Простыми словами, лазерное излучение представляет собой волны электромагнитные, которые распространяются параллельно друг другу. Именно поэтому лазерный луч обладает острой направленностью, очень маленьким углом рассеивания, а также повышенной интенсивностью влияния на поверхность, которая подвергается облучению.

Чем же отличается лазерное излучение оттого, которое получается от лампы? Следует отметить, что лапа накапливания считается рукотворным источником освещения, который дает волны электромагнитные, что отличается от лазерного. Угол распространения в спектральном диапазоне составляет триста шестьдесят градусов.

Воздействие лазера на человеческий организм

По причине различного использования квантового генератора, многие ученые и медики решили изучить лазерное излучение, а также его воздействие на организм человека. Благодаря многочисленным опытам, научным работам, стало известно, что излучение лазерное имеет такие свойства:

  • в процессе взаимодействия с источником подобного излучения, повреждающим фактором может выступать установка и отраженные лучи;
  • тяжесть поражения напрямую связана с параметрами локализации облучения, электромагнитных волн;
  • энергия, которая поглощается подобными тканями, вызывает перечень негативных, вредных эффектов, а именно – световых, тепловых и прочих.

В момент биологического действия такого излучения поражение происходит в определенной последовательности:

  • Резко повышается температура тела, которая сопровождается ожогами.
  • Затем закипает межтканевая, клеточная жидкость.
  • Пар, который образуется в результате подобного процесса, оказывает невероятное давление, поэтому все заканчивается взрывом, своеобразной волной ударной, разрушающей ткани.

Малая, средняя интенсивность облучений оказывает поражающий эффект на кожу. Если происходит более серьезное облучение, то повреждения проявляются отеками на кожном покрове, омертвением участков тела, кровоизлиянием. Относительно внутренних тканей – они сильно трансформируются. Основная опасность источает от зеркально отраженного, прямого излучения. Такой процесс становится причиной серьезных изменений в работе всех внутренних систем, органов.

Больше всего страдают органы зрения – глаза, именно поэтому при работе с лазером, необходимо носить специальные защитные очки.

Лазер генерирует короткие импульсы облучения, которые провоцируют сильнейшее повреждение роговицы и сетчатки, хрусталика, а также радужной оболочки глаза.

Существует три основных причины для таких явлений:

  • За короткий отрезок времени, в течение которого срабатывает лазерное излучение, мигательный рефлекс не успевает вовремя сработать.
  • Роговица и оболочка считаются наиболее уязвимыми.
  • Пагубное воздействие спровоцировано оптической системой глаза, которая фокусирует излучение на дне глаза. Точка лазера попадает на сосуды сетчатки, закупоривая ее. Учитывая то, что там отсутствуют рецепторы, отвечающие за боль, повреждение сетчатки практически незаметно. Если выжженная часть глаза обретает большие размеры, изображения предметов, попадающие на нее – просто испаряются.

Характерные признаки поражения органов зрения:

  • наблюдается кровоизлияние в клетчатке;
  • отечность век;
  • болезненные ощущения в глазах;
  • помутнение, размытое изображение;
  • спазмы век.

В результате подобных повреждений, восстановить клетки сетчатки невозможно! Сила излучения, которая вызывает повреждение глаз, обладает более низким уровнем, чем-то облучение, которое поражает кожный покров. Основную опасность несут все лазеры инфракрасные. Помимо этого, все приборы, которые дают излучение видимого спектра с размером мощности более 5 мвт – чрезвычайно опасны для человека!

Основные способы защиты на производстве

Большинство людей сразу подумают о том, что понадобятся одни защитные очки от лазерного излучения, но их будет недостаточно. Учитывая то, что множество людей работает на предприятиях с квантовыми генераторами, важно знать главные предписания, нормы, касающиеся защиты от подобного облучения. Они состоят из индивидуальной, общей защиты, так как все зависит от степени опасности, которую несет установка с лазером.

Можно насчитать четыре группы опасности, о которых должен предупредит производитель. Для человеческого организма опасны те лазеры, которые входят во вторую, третью, четвертую группу. К коллективным средствам защиты можно отнести кожухи, экраны защитные и световоды, блокировка и сигнализация, телеметрические способы слежения, ограждение места с облучением, которое превышает допустимую норму.

Что касается индивидуальной защиты работников, то их необходимо обеспечить специальной одеждой. Что касается глаз, то потребуются защитные очки, имеющие специальное покрытие. Очки помогут вам сократить уровень негативного воздействия, сохранить зрение и здоровье глаз. Идеальная профилактика подобного облучения – современное посещение врача, соблюдение всех правил безопасности.

Важно всегда носит очки защитные, спецодежду, так можно уберечь себя и свое здоровье от проблем.

Меры защиты от лазерных гаджетов

Участились случаи, когда люди пользуются в быту без особого контроля светильниками, лазерами самодельными, фонариками лазерными и световыми указками, не понимая, какую они несут опасность. Даже при их использовании необходимо носить защитные очки. Чтобы предотвратить печальные последствия, важно всегда помнить:

  • носить защитные очки;
  • особую опасность несут те лучи, которые отражаются от пряжек, стекла, предметов;
  • защитные очки обязаны подходить длине волны всего излучения от лазера;
  • «играть» с лазером можно там, где нет людей;
  • если луч с небольшой интенсивностью попадет в глаза спортсмену, пилоту или же водителю, может произойти трагедия;
  • хранение подобных гаджетов – в недоступном месте для детей, подростков;
  • запрещается смотреть в объектив, который является источником излучения.

Стоит помнить, что лазерные гаджеты, генераторы квантовые, способны нести огромную угрозу для окружающих, а также их обладателей. Тщательное соблюдение правил безопасности позволит вам обезопасит себя. Защитные очки это — не аксессуар, а надежная и эффективная защита.

Польза низкоинтенсивного излучения

В современной дерматологии, косметологии особой популярностью пользуется низкоинтенсивное лазерное излучение. В процессе воздействия подобным излучением на организм человека, можно наблюдать положительные трансформации:

  • ликвидируются все воспалительные процессы, протекающие в организме;
  • замедляется старение клеток и ткани;
  • укрепляется общий, местный иммунитет;
  • происходит антибактериальное влияние;
  • повышается эластичность кожного покрова;
  • утолщается эпидермальный слой;
  • реконструируется дерма;
  • увеличивается численность сальных, потовых желез, за счет нормализации их полноценной активности;
  • фиксируется скопление жира, увеличивается мышечная масса, благодаря улучшенным процессам обмена веществ;
  • за счет хорошего питания тканей и клеток, усиленной циркуляции крови, наблюдается активный рост волос.

Подобный положительный эффект возможен благодаря длительному, систематическому лечению. Первый результат заметен спустя три сеанса, но в основном требуется не менее 10-30 терапий. Чтобы закрепить результат, профилактика проводится трижды в год по 10 сеансов.

Измерение мощности излучений

Что касается энергии и мощности излучений, то это совершенно разные, но связаны между собой величины, ими называют параметры энергетические. Измерение энергии, мощности, производится разными способами, а также теми, которые используют в СВЧ-диапазоне. Понадобится специальный измеритель.

Измеритель мощности бывает следующим:

  • Фотоэлектрический измеритель мощности лазерного излучения. Практически каждый фотоприемник, который имеет выходной сигнал пропорционально падающему потоку, позволит провести измерение мощности от непрерывных излучений. С этой целью понадобится полупроводниковый фотоприемник.
  • Измеритель большой мощности излучения. Для этой цели потребуются эффекты в кристаллах. Например, измеритель мощности сегнетоэлектрический. Когда лучи падают на него, то на специальном кристалле или же резисторе, можно увидеть напряжение, которое поддается измерению. В роли сегнетоэлектрика могут выступать – титанат бария или свинца. Такой измеритель очень эффективен.
  • Измеритель мощности с обратным электрооптическим эффектом. Когда монохроматическое излучение касается кристалла, происходит поляризация. Когда такой кристалл помещают в специальный конденсатор, то мощно померить мощность, которая связана с особым напряжением.

Измеритель поможет определить силу лазерного излучения. Важно помнить, что при работе с лазерами, особенно на большом производстве, необходимо соблюдать все возможные меры безопасности. Не забывайте носить специальные очки и одежду.

Лазерное излучение – это узконаправленные вынужденные потоки энергии. Оно бывает непрерывным, одной мощности или импульсным, где мощность периодически достигает определенного пика. Энергия образуется с помощью квантового генератора – лазера. Поток энергии представляет собой электромагнитные волны, которые распространяются параллельно относительно друг друга. Это создает минимальный угол рассеивания света и определенную точную направленность.

Сфера применения лазерного излучения

Свойства лазерного излучения позволяет применять его в различных сферах жизнедеятельности человека:

  • наука – исследования, опыты, эксперименты, открытия;
  • военно-оборонная промышленность и космическая навигация;
  • производственная и техническая сфера;
  • локальная термическая обработка – сварка, резка, гравировка, паяние;
  • бытовое применение – лазерные датчики для считывания штрихкода, устройства для считывания компактных дисков, указки;
  • лазерное напыление для повышения износостойкости металла;
  • создание голограмм;
  • усовершенствование оптических устройств;
  • химическая промышленность – запуск и анализ реакций.

Применение лазера в медицине

Лазерное излучение в медицине – это прорыв в лечении пациентов, требующих оперативного вмешательства. Лазер применяют для производства хирургического инструментария.

Неоспоримые преимущества хирургического лечения лазерным скальпелем очевидны. Он позволяет сделать бескровный разрез мягких тканей. Это обеспечивается мгновенной спайкой мелких сосудов и капилляров. Во время использования такого инструмента хирург полностью видит все операционное поле. Лазерный поток энергии рассекает на определенном расстоянии, не контактируя с внутренними органами и сосудами.

Важным приоритетом является обеспечение абсолютной стерильности. Строгая направленность лучей позволяет делать операции с минимальной травматизацией. Реабилитационный период пациентов значительно сокращается. Быстрее возвращается трудоспособность человека. Отличительной особенностью применения лазерного скальпеля является безболезненность в послеоперационный период.

Развитие лазерных технологий позволило расширить возможности его применения. Были обнаружены свойства лазерного излучения положительно влиять на состояние кожи. Поэтому его активно применяют в косметологии и дерматологии.

В зависимости от своего типа, кожа человека по-разному поглощает лучи и реагирует на них. Аппараты лазерного излучения могут создать нужную длину волны в каждом конкретном случае.

Применение:

  • эпиляция – разрушение волосяной луковицы и удаления волос;
  • лечение угревой сыпи;
  • удаление пигментных и родимых пятен;
  • шлифовка кожи;
  • применение при бактериальном поражении эпидермиса (обеззараживает, убивает патогенную микрофлору), излучение лазера предупреждает распространение инфекции.

Офтальмология – это первая отрасль, которая применила лазерное излучение. Направления в применении лазеров в микрохирургии глаза:

  • лазеркоагуляция – использование термических свойств для лечения сосудистых заболеваний глаза (поражение сосудов роговицы, сетчатки);
  • фотодеструкция – рассечение тканей на пике мощности лазера (вторичная катаракта и ее рассечение);
  • фотоиспарение – длительное воздействие тепла, применяют при воспалительных процессах глазного нерва, при конъюнктивите;
  • фотоабляция – постепенное удаление тканей, используют для лечения дистрофических изменений роговицы, устраняет ее помутнение, операционное лечение глаукомы;
  • лазерстимуляция – оказывает противовоспалительное, рассасывающее действие, улучшает трофику глаза, применяется для лечения склеритов, экссудации в камере глаза, гемофтальмов.

Лазерное облучение используется при онкологических заболеваниях кожи. Наиболее эффективен лазер для удаления меланобластомы. Иногда метод применяют для лечения рака пищевода или прямой кишки 1-2 стадии. При глубоком расположении опухоли и метастазах лазер не эффективен.

Какую опасность представляет лазер для человека

Влияние лазерного излучения на организм человека может быть негативным. Облучение может быть прямым, рассеянным и отраженным. Негативное воздействие обеспечивается световыми и тепловыми свойствами лучей. Степень поражения зависит от нескольких факторов – длина электромагнитной волны, место локализации воздействия, поглотительная способность тканей.

Наиболее подвержены влиянию лазерной энергии глаза. Сетчатка глаза очень чувствительна, поэтому часто случаются ее ожоги. Последствия – частичная потеря зрения, необратимая слепота. Источник лазерного излучения – инфракрасные приборы-излучатели видимого света.

Симптомы поражения радужки, сетчатки, роговицы, хрусталика лазером:

  • болезненные ощущения и спазмы в глазу;
  • отек век;
  • кровоизлияния;
  • помутнение хрусталика.

При облучении средней интенсивности возникают термические ожоги кожи. В месте контакта лазера и кожи резко повышается температура. Происходит вскипание и испарение внутриклеточной и межтканевой жидкости. Кожа становится красной. Под давлением происходит разрыв тканевых структур. На коже появляется отек, в некоторых случаях внутрикожные кровоизлияния. Впоследствии на месте ожога появляются некротические (омертвевшие) участки. В тяжелых случаях обугливание кожи происходит моментально.

Отличительный признак лазерного ожога – четкие границы поражения кожи, а пузыри образуются в эпидермисе, а не под ним.

При рассеянном поражении кожи в месте поражения она становится нечувствительной, а эритема появляется через несколько дней.

Лазерное излучение инфракрасного спектра может проникать глубоко через ткани и поражать внутренние органы. Характерность глубокого ожога – чередование здоровой и поврежденной ткани. Первоначально при воздействии лучей человек не испытывает боли. Наиболее уязвимый орган – печень.

Воздействие излучения на организм в целом вызывает функциональные расстройства центральной нервной системы, сердечно-сосудистой деятельности.

Признаки:

  • перепады артериального давления;
  • повышенная потливость;
  • необъяснимая общая утомляемость;
  • раздражительность.

Меры предосторожности и защиты от лазерного излучения

Наиболее риску облучения подвержены люди, деятельность которых связана с применением квантовых генераторов.

В соответствии с санитарными нормами лазерное излучение разделяется на четыре класса опасности. Для организма человека опасность представляет второй, третий, четвертый классы.

Технические методы защиты от лазерного излучения:

  1. Правильная планировка промышленных помещений, внутренняя отделка должна соответствовать правилам техники безопасности (лазерные лучи не должны зеркально отражаться).
  2. Соответствующее размещение излучающих установок.
  3. Ограждение зоны возможного облучения.
  4. Порядок и соблюдение правил обслуживания и эксплуатации оборудования.

Еще одна защита от лазера – индивидуальная. Она включает такие средства: очки от лазерного излучения, защитные кожухи и экраны, комплект спецодежды (технологические халаты и перчатки), линзы и призмы, отражающие лучи. Все сотрудники регулярно должны проходить профилактические медицинские осмотры.

Использование лазера в быту тоже бывает опасным для здоровья. Неправильная эксплуатация световых указок, лазерных фонариков может нанести непоправимый вред человеку. Защита от лазерного излучения предусматривает простые правила:

  1. Нельзя направлять источник излучения на стекла и зеркала.
  2. Категорически запрещено направлять лазер в глаза себе или другому человеку.
  3. Хранить гаджеты с лазерным излучением необходимо в недоступном для детей месте.

Действие лазера, в зависимости от модификации излучателя, бывает тепловым, энергетическим, фотохимическим и механическим. Наибольшую опасность представляет лазер с прямым излучением, с большой интенсивностью, узкой и ограниченной направленностью луча, высокой плотностью излучения. К опасным факторам, которые способствуют получению облучения, относится высокое производственное напряжение в сети, загрязнение воздуха химическими веществами, интенсивный шум, рентгеновское излучение. Биологические эффекты от лазерного излучения делятся на первичные (местный ожог), и вторичные (неспецифические изменения как ответная реакция всего организма). Следует помнить, что бездумное применение самодельных лазеров, световых указок, светильников, лазерных фонариков может нанести окружающим непоправимый вред.

Гениальное предвидение А. Эйнштейна, сделанное им ещё в 1917 году, о возможности индуцированного излучения света атомами, блестяще подтвердилось почти через половину столетия при создании квантовых генераторов советскими физиками Н. Г. Басовым и А. М. Прохоровым. Согласно английской аббревиатуре, это устройство ещё называют лазером, а создаваемое ими излучение - лазерным.

Где мы встречаемся в повседневной жизни с лазерным излучением? В наши дни лазеры получили широкое распространение, - это различные области техники и медицины, а также световые эффекты в эстрадных представлениях и шоу. Красота переливающихся и танцующих лазерных лучей сделала их весьма притягательными для домашних экспериментаторов и производителей лазерных гаджетов. Но как лазерное излучение влияет на здоровье человека?

Чтобы разобраться с этими вопросами необходимо напомнить, что такое лазерное излучение. Для этого «перенесёмся» на урок физики в 10 классе и поговорим о квантах света.

Что такое лазерное излучение

Обычный свет рождается в атомах. Лазерное излучение - так же. Однако при иных физических процессах и в результате воздействия внешнего электромагнитного поля. Поэтому излучение лазера является вынужденным (стимулированным).

Лазерное излучение - это электромагнитные волны, распространяющиеся почти параллельно друг другу. Поэтому луч лазера имеет острую направленность, чрезвычайно малый угол рассеяния и очень значительную интенсивность воздействия на облучаемую поверхность.

В чём же состоит отличие излучения лазера от, например, излучения лампы накаливания? Лампа накаливания - это рукотворный источник света, излучающий электромагнитные волны, в отличие от лазерного излучения, в широком спектральном диапазоне с углом распространения около 360 градусов.

Влияние лазерного излучения на организм человека

Возможность чрезвычайно разнообразного применения квантовых генераторов, побудило специалистов разных областей медицины вплотную заняться воздействием лазерного излучения на организм человека. Было установлено, что этот вид излучения обладает следующими свойствами:

Последовательность поражения при биологическом действии лазерного излучения такова:

  • резкое повышение температуры, сопровождаемое ожогом;
  • за этим следует вскипание межтканевой, а также клеточной жидкости;
  • образующийся пар создаёт огромное давление, завершающийся взрывом и ударной волной, которая разрушает окружающие ткани.

При малых и средних интенсивностях облучения особенно страдают кожные покровы. При более сильном воздействии, повреждения на коже имеют вид отёков, кровоизлияний и омертвевших участков. Зато внутренние ткани претерпевают значительные изменения. Причём наибольшая опасность исходит от прямого и зеркально отражённого излучения. Оно же вызывает патологические изменения в работе важнейших систем организма.

Особо остановимся на воздействии лазерного излучения на органы зрения.

Короткие импульсы излучения, генерируемые лазером, вызывают сильное поражение сетчатки, роговицы, радужной оболочки и хрусталика глаза.

Здесь можно выделить 3 причины.

Характерными симптомами при поражении глаз являются спазмы и отёк век, боль в глазах, помутнение и кровоизлияние сетчатки. После повреждения клетки сетчатки не восстанавливаются.

Интенсивность излучения, приводящая к повреждению органов зрения, имеет более низкий уровень, чем излучение, вызывающее повреждение кожи. Опасность могут представлять любые инфракрасные лазеры, а также устройства, дающие излучения видимого спектра с мощностью более 5 мвт.

Зависимость влияния на человека лазерного излучения от его спектра

лазерное излучение в медицине

Замечательные учёные разных стран, трудившиеся над созданием квантового генератора, не могли и предугадать, какое широкое применения найдёт их детище в различных сферах жизни. Но каждая из этих областей потребует определённых, специфических длин волн.

Отчего же зависит длина волны лазерного излучения? Она определяется природой, точнее, электронным строением рабочего тела (среды, где генерируется это излучение). Существуют различные твердотельные и газовые лазеры. Эти чудо лучи могут принадлежать к ультрафиолетовому, видимому (чаще красному) и инфракрасному участку спектра. Их диапазон заключён в пределах от 180 нм. и до 30 мкм.

Характер воздействия лазерного излучения на организм человека во многом зависит от длины волны. Наше зрение примерно в 30 раз более чувствительно к зелёному, чем к красному цвету. Следовательно, мы отреагируем на зелёный лазер быстрее. В этом смысле он безопаснее, чем красный.

Защита от лазерного излучения на производстве

Существует огромная категория людей, чья профессиональная деятельность прямо или косвенно связана с квантовыми генераторами. Для них существуют строгие предписания и нормы для защиты от лазерного излучения. Они включают в себя меры общей и индивидуальной защиты, зависящие от степени опасности, которые представляет эта лазерная установка для всех структур человеческого организма.

использование лазера на производстве

Всего существует 4 класса опасности, которые обязан указать изготовитель. Опасность для организма человека представляют лазеры 2,3 и 4 класса.

Коллективные средства защиты от лазерного излучения, это защитные экраны и кожухи, световоды, телевизионные и телеметрические методы слежения, системы сигнализации и блокировки, а также ограждение зоны с облучением, превышающей предельно допустимый уровень.

Индивидуальная защита сотрудников обеспечивается специальным комплектом одежды. Для защиты глаз обязательным правилом является ношение очков со специальным покрытием.

Лучшей профилактикой лазерного излучения является соблюдение правил эксплуатации и защиты, а также своевременное медицинское обследование.

Защита от лазерного излучения для пользователей лазерных гаджетов

Бесконтрольное использование быту самодельных лазеров, светильников, световых указок, лазерных фонариков несёт серьёзную опасность для окружающих. Чтобы избежать трагических последствий, следует помнить:

Квантовые генераторы и любые лазерные гаджеты представляют потенциальную угрозу для их обладателей и окружающих. И только тщательное соблюдение мер безопасности позволит вам наслаждаться этими достижениями без вреда для себя и ваших друзей.

Лазеры и излучение от них используется человечеством уже довольно давно. Помимо медицинской среды эксплуатации подобные устройства получили широкое применение в технических отраслях промышленности. Взяли их на вооружение специалисты из области декорирования и создания спецэффектов. Теперь ни одно масштабное шоу не обходится без сцены с лазерными лучами.

Чуть позже такое излучение перестало принимать только промышленные формы и стало встречаться в быту. Но не все знают, как отражается влияние лазерного излучения на организм человека при регулярном и периодическом облучении.

Что такое лазерное излучение?

Лазерное излучение рождается по принципу создания света. В обоих случаях используются атомы. Но в ситуации с лазерами присутствуют другие физические процессы, и прослеживается воздействие электромагнитного поля внешнего типа. Из-за этого ученые называют излучение от лазеров вынужденным или стимулированным.

В терминологии физики лазерным излучением называют электромагнитные волны, которые распространяются почти параллельно по отношению друг к другу. Из-за этого лазерный луч отличается острой направленностью. Кроме этого такой луч обладает небольшим углом рассеивания совместно с огромной интенсивностью влияния на поверхность, которую облучают.

Главным отличием лазера от стандартной лампы накаливания считается спектральный диапазон. Лампа числится рукотворным источником света, который излучает электромагнитные волны. Спектр освещения у классической лампы составляет почти 360 градусов.

Воздействие лазерного облучения на все живое

Вопреки стереотипам, влияние лазерного излучения на организм человека не всегда подразумевает что-то негативное. Из-за повсеместного использования квантовых генераторов в разных жизненных сферах ученые решили задействовать возможности узконаправленного луча в медицине.

В ходе многочисленных исследований стало понятно, что лазерное облучение имеет несколько характерных свойств:

  • Повреждения от лазера могут производиться не только в процессе прямого воздействия на организм из аппарата. Нанести ущерб может даже рассеянное облучение или отраженные лучи.
  • Между степенью поражения и основными параметрами электромагнитной волны прослеживается прямая связь. Также на тяжесть поражения влияет расположение облученной ткани.
  • Негативный эффект при поглощении тканями энергии может выражаться в тепловом или световом воздействии.

Но вот последовательность при поражении лазером всегда предусматривает идентичный биологический принцип:

  • повышение температуры, которое сопровождается ожогом;
  • закипание межтканевой и клеточной жидкостей;
  • образование пара, создающего весомое давление;
  • взрыв и ударная волна, разрушающие все ткани поблизости.

Зачастую неправильно использованный лазерный излучатель несет, в первую очередь, угрозу для кожных покровов. Если влияние было особенно сильным, то кожа будет выглядеть отечной, со следами многочисленных кровоизлияний. Также на теле будут встречаться большие участки омертвевших клеток.

Задевает такое облучение и внутренние ткани. Но при масштабных внутренних поражениях рассеянное воздействие лучами не столько сильно, как прямое или отраженное зеркально. Подобные повреждения будут гарантировать патологические изменения в функционировании различных систем организма.

Кожный покров, который страдает больше всего, является защитой внутренних органов каждого человека. Из-за этого он берет большую часть негативного воздействия на себя. В зависимости от разных степеней поражения на коже будут проявляться покраснения или прослеживаться некроз.

Исследователи пришли к выводу, что люди с темной кожей менее восприимчивы к глубинным поражениям из-за лазерного облучения.

Схематически все ожоги можно разделить на четыре степени вне зависимости от пигментации:

  • I степень. Подразумевает стандартные ожоги эпидермиса.
  • II степень. Включает ожоги дермы, что выражается в образовании характерных пузырей поверхностного слоя кожи.
  • III степень. Основывается на глубинных ожогах дермы.
  • IV степень. Самая опасная степень, которая отличается деструкцией всей толщины кожи. Поражение охватывает подкожную клетчатку, а также соседствующие к ней слои.

Лазерные поражения глаз

На втором месте в негласном рейтинге возможного отрицательного влияния лазера на организм человека находятся поражения органов зрения. Короткие лазерные импульсы способны за небольшой промежуток времени вывести из строя:

  • сетчатку,
  • роговицу,
  • радужную оболочку,
  • хрусталик.

Причин для подобного воздействия существует несколько. Основными из них выступают:

  • Невозможность вовремя среагировать. Из-за того что длительность импульса составляет не более 0,1 секунды, человек не успевает моргнуть. Из-за этого глаз остается незащищенным.
  • Легкая уязвимость. По своим особенностям хрусталик и роговица считаются сами по себе уязвимыми органами.
  • Оптическая глазная система. Из-за фокусировки лазерного излучения на глазном дне, точка облучения при попадании на сосуд сетчатки способна закупорить его. Так как там нет болевых рецепторов, то повреждение обнаружить мгновенно не получится. Только после того как выжженная территория становится больше, человек замечает отсутствие части изображения.

Чтобы быстрее сориентироваться при потенциальном поражении, эксперты советуют прислушиваться к таким симптомам:

  • спазмы век,
  • отек век,
  • болевые ощущения,
  • кровоизлияние в сетчатке,
  • помутнение.

Опасности добавляет тот факт, то поврежденные лазером клетки сетчатки теряют возможность восстановиться. Так как интенсивность облучения, влияющего на органы зрения ниже, чем идентичный порог для кожи, врачи призывают к осторожности.

Следует остерегаться инфракрасных лазеров разного типа, а также приборов, которые генерируют излучение с мощностью свыше 5 мвт. Распространяется правило на технику, выдающую лучи видимого спектра.

Взаимосвязь между лазерной волной и ее сферой применения

Каждая из областей применения лазерного излучения ориентируется на строго определенный показатель длины волны.

Данный показатель напрямую зависит от природы. Вернее, от электронного строения рабочего тела. Это означает, что ответственной за длину волны выступает среда, где происходит генерация ее излучения.

В мире имеются разные виды твердотельных и газовых лазеров. Задействованные лучи должны принадлежать к одному из трех наиболее распространенных типов:

  • видимый,
  • ультрафиолетовый,
  • инфракрасный.

При этом рабочий диапазон облучения может колебаться от 180 нм до 30 мнм.

Особенности влияния лазера на человеческий организм базируются на длине волны. Так, например, человек быстрее реагирует на зеленый лазер, чем на красный. Последний не отличается безопасностью для всего живого. Причина кроется в том, что наше зрение почти в 30 раз луче воспринимает зеленый, нежели красный цвет.

Как защититься от лазера?

В большинстве случаев защита от лазерного излучения нужна тем людям, чья работа тесно связана с его постоянным использованием. Если предприятие имеет на своем балансе любой тип квантового генератора, то его руководители обязательно производят инструктаж своих сотрудников.

Эксперты разработали отдельную сводку правил поведения и безопасности, которые позволят защитить сотрудника от возможных последствий излучения. Главным правилом выступает наличие средств индивидуальной защиты. Причем подобные средства могут разительно отличаться в зависимости от прогнозируемой степени опасности.

Всего в международной классификации предусмотрено разделение на четыре класса опасности. Соответствующую маркировку должен указать изготовитель. Только первый класс считается относительно безопасным даже для органов зрения.

Ко второму классу принадлежат излучения прямого типа, которые поражают органы глаз. Также к представленной категории причислено зеркальное отражение.

Гораздо опаснее излучение третьего класса. Его прямое воздействие угрожает глазам. Не менее опасно отраженное излучение диффузного типа на расстоянии 10 см от поверхности. Кожные поражения будут происходить не только при прямом воздействии, но и при зеркально отраженном.

При четвертом классе страдает и кожа, и глаза при различных форматах воздействия.

К коллективным защитным мерам на производстве причисляют:

  • специальные кожухи,
  • защитные экраны,
  • световоды,
  • инновационные методы слежения,
  • сигнализации,
  • блокировки.

Из относительно примитивных, но действенных способов выделяют ограждение зоны, где производится облучение. Это позволит защитить работников от случайного облучения по неосторожности.

Также на особо опасных предприятиях обязательно использовать средства индивидуальной защиты сотрудников. Они подразумевают под собой особый комплект спецодежды. Не обойтись во время работы и без ношения очков, предусматривающих защитное покрытие.

Лазерные гаджеты и их излучение

Многие не подозревают о том, насколько серьезными могут быть последствия бесконтрольной эксплуатации самодельных устройств с лазерным принципом. Касается это самодельных конструкций вроде лазерных:

  • светильников,
  • указок,
  • фонариков.

Особенно это касается старшеклассников, которые стремятся провести ряд опытов, не имея представления о правилах безопасности при их конструировании.

Использовать лазеры домашнего производства в помещениях, где присутствуют люди, недопустимо. Также нельзя направлять лучи на стекла, металлические пряжки и прочие предметы, которые могут давать отблески.

Даже если луч отличается небольшой интенсивностью, он может привести к трагедии. Если навести лазер на глаза водителя во время активного движения, то он может ослепнуть и не справиться с управлением.

Ни при каких обстоятельствах нельзя заглядывать в объектив лазерного источника излучения. Отдельно стоит учитывать то, что очки для работы с лазером должны быть рассчитаны на ту длину волны, которую будут генерировать выбранные аппараты.

Чтобы не допустить серьезной трагедии доктора просят прислушаться к этим рекомендациям и следовать им всегда.

Что еще почитать